Artist's rendering of KELT-9b (red), illustrated along with the star it orbits, KELT-9, which is more than twice as large and nearly twice as hot as our Sun. (Credit: Robert Hurt, NASA/JPL-Caltech.)


EDITOR'S NOTE: Prior to coming to Texas A&M University in 2008, Darren DePoy spent 18 years at The Ohio State University, building both the astronomy program along with an international reputation for excellence in astronomical instrumentation. Together with fellow Texas A&M astronomer Jennifer Marshall, he built the first KELT system used in the set of measurements involved in new research out of Ohio State detailed below -- a system that was later duplicated and installed in the Southern Hemisphere to complement the original one observing the Northern Hemisphere skies. DePoy and Marshall, both members of the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy and astronomical instrument builders in the Charles R. '62 and Judith G. Munnerlyn Astronomomical Laboratory, are cited in the team's paper as among those "essential for the initiation and successful operation of the KELT-North and KELT-South surveys." Their brief comments on the discovery are below:

DePoy: "It's a pretty weird planet. This discovery hints that the process of planet formation is even more diverse than we thought and that it happens around stars more massive than the Sun."

Marshall: "We've found several planets but nothing as interesting as this one."

A newly discovered Jupiter-like world is so hot that it's stretching the definition of the word "planet."

With a day-side temperature of 4,600 Kelvin (more than 7,800 degrees Fahrenheit), planet KELT-9b is hotter than most stars and only 1,200 Kelvin (about 2,000 degrees Fahrenheit) cooler than our own Sun.

In this week's issue of the journal Nature and at a presentation at the the 230th meeting of the American Astronomical Society, an international research team led by astronomers at The Ohio State University and Vanderbilt University describes a planet with some very unusual features.

For instance, it's a gas giant 2.8 times more massive than Jupiter but only half as dense because the extreme radiation from its host star has caused its atmosphere to puff up like a balloon. And because it is tidally locked to its star -- as the Moon is to Earth -- the day side of the planet is perpetually bombarded by stellar radiation, making it so hot that molecules such as water, carbon dioxide and methane can't form there. The properties of the night side are still mysterious -- molecules may be able to form there, but probably only temporarily.

"It's a planet by any of the typical definitions based on mass, but its atmosphere is almost certainly unlike any other planet we've ever seen just because of the temperature of its day side," said Scott Gaudi, professor of astronomy at Ohio State and a leader of the study.

KELT-9b orbits a star, dubbed KELT-9, which is more than twice as large and nearly twice as hot as our Sun. Keivan Stassun, a professor of physics and astronomy at Vanderbilt who directed the study with Gaudi, said, "KELT-9 radiates so much ultraviolet radiation that it may completely evaporate the planet. Or, if gas giant planets like KELT-9b possess solid rocky cores as some theories suggest, the planet may be boiled down to a barren rock, like Mercury."

That is, if the star doesn't grow to engulf it first.

"KELT-9 will swell to become a red giant star in about a billion years," Stassun said. "The long-term prospects for life, or real estate for that matter, on KELT-9b are not looking good."

Given that its atmosphere is constantly blasted with high levels of ultraviolet radiation, the planet may even be shedding a tail of evaporated planetary material like a comet, Gaudi added.

While Gaudi and Stassun spend a lot of time developing missions designed to find habitable planets in other solar systems, the scientists said there's a good reason to study worlds that are unlivable in the extreme.

"As has been highlighted by the recent discoveries from the MEarth collaboration, the planet around Proxima Centauri, and the astonishing system discovered around TRAPPIST-1, the astronomical community is clearly focused on finding Earth-like planets around small, cooler stars like our Sun," Gaudi said. "They are easy targets and there's a lot that can be learned about potentially habitable planets orbiting very low-mass stars in general. On the other hand, because KELT-9b's host star is bigger and hotter than the Sun, it complements those efforts and provides a kind of touchstone for understanding how planetary systems form around hot, massive stars."

Stassun added, "As we seek to develop a complete picture of the variety of other worlds out there, it's important to know not only how planets form and evolve, but also when and under what conditions they are destroyed."

How was this new planet found?

In 2014, astronomers using the KELT-North telescope at Winer Observatory in Arizona noticed a tiny drop in the star's brightness -- only about half of one percent -- that indicated a planet may have passed in front of the star. The brightness dipped once every 1.5 days -- the amount of time it takes for the planet to complete a "yearly" circuit around its star.

Subsequent observations confirmed the signal to be due to a planet and revealed it to be what astronomers call a "hot Jupiter" -- the ideal kind of planet for the KELT telescopes to spot.

KELT is short for "Kilodegree Extremely Little Telescope." Astronomers at Ohio State, Vanderbilt and Lehigh University jointly operate two KELTs (one each in the Northern and Southern Hemispheres) in order to fill a large gap in the available technologies for finding extrasolar planets.

Other telescopes are designed to look at very faint stars in much small sections of the sky and at very high resolution. The KELTs, in contrast, look at millions of very bright stars at once, over broad sections of sky, and at low resolution.

It's a low-cost means of planet hunting using mostly off-the-shelf technology. Whereas a traditional astronomical telescope costs millions of dollars to build, the hardware for a KELT telescope runs less than $75,000.

"This discovery is a testament to the discovery power of small telescopes and the ability of citizen scientists to directly contribute to cutting-edge scientific research," said Joshua Pepper, Lehigh astronomer and assistant professor of physics who built the two KELT telescopes.

The astronomers hope to take a closer look at KELT-9b with other telescopes -- including NASA's Spitzer and Hubble Space Telescopes (HST) and eventually the James Webb Space Telescope. Observations with HST would enable them to see if the planet really does have a cometary tail and allow them to determine how much longer that planet will survive its current hellish condition.

Study co-authors from Ohio State include Daniel J. Stevens, Marshall C. Johnson, Matthew Penney, Andrew Gould and Richard Pogge, all of the Department of Astronomy.

American partner institutions include Vanderbilt University, Fisk University, Pennsylvania State University, the Harvard-Smithsonian Center for Astrophysics, Las Cumbres Observatory Global Telescope Network, University of Notre Dame, Lehigh University, NASA Ames Research Center, Bay Area Environmental Research Institute, Swarthmore College, IPAC, Brigham Young University, University of California-Santa Cruz, University of Wyoming, Louisiana State University, University of Louisville, Spot Observatory in Nashville, Westminster College, Kutztown University, University of Hawaii, University of Washington, Texas A&M University, Wellesley College, and Winer Observatory in Sonoita, AZ. International team members are from Denmark, Italy, Japan, Portugal, Switzerland, Australia, Germany and South Africa.

The study was largely funded by the National Science Foundation (NSF) through an NSF CAREER Grant, NSF PAARE Grant and an NSF Graduate Research Fellowship. Additional support came from NASA via the Jet Propulsion Laboratory and the Exoplanet Exploration Program; the Harvard Future Faculty Leaders Postdoctoral Fellowship; Theodore Dunham, Jr., Grant from the Fund for Astronomical Research; and the Japan Society for the Promotion of Science.

The team's Nature paper, "A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host," can be viewed online along with related figures and captions.


Contact: Pam Frost Gorder, (614) 292-9475 or Gorder.1@osu.edu or Scott Gaudi, (614) 292-1914 or Gaudi.1@osu.edu

Frost Gorder Pam

  • KELT-9b (red) is tidally locked to its star, KELT-9 (white), just as the Moon is to Earth. (Credit: Robert Hurt, NASA/JPL-Caltech.)

  • Animation of KELT-9b's orbit around KELT-9. (Credit: Robert Hurt, NASA/JPL-Caltech.)

  • The research is featured on the cover of the June 19, 2017 issue of Nature. (Credit: Nature.)

  • Dr. Darren DePoy

  • Dr. Jennifer Marshall

© Texas A&M University. To request use of any of our photographs for educational use or to view additional options from our archive, please contact the College of Science Communications Office.

College of Science
517 Blocker
TAMU 3257 | 979-845-7361
Site Policies
Contact Webmaster
Social Media